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The Traveling Salesman Problem and 
Its Analogy with Two-Dimensional Spin Glasses 
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The low-temperature regime of the Euclidean traveling salesman problem is 
studied numerically. The specific heat behavior is analyzed in terms of the 
number of cities and compared with that of spin-glasses. A properly defined 
order parameter shows the existence of freezing effects at low temperature. The 
Euclidean TSP behaves as a spin glass in two dimensions. 
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The traveling salesman problem (TSP) has been studied for a long time as 
the archetype of the nondeterministic polynomial time (NP-complete) class 
of problems. Because of the strategic importance of the TSP, great effort 
has been made to find approximate solutions. Analytical and numerical 
techniques developed in the field of spin glasses have been applied to it suc- 
cesfully because of the similarity between the low-temperature behavior of 
spin glasses and several complex combinatorial optimization problems. (~) 

The TSP attempts to find the shortest route that connects all N given 
points (or cities), the route ending at its starting point. Two. different ver- 
sions of this problem have been studied. One is the nonmetric TSP, in 
which the distances between the cities are considered as independent 
random variables with a certain probability distribution. This approach is 
parficulary suitable for analytical calculations/2'3) It can be considered as 
the mean-field version, since the dimension does not play any role. The 
numerical work of Toulouse and Kirkpatrick ~4) for this model with a 
uniform distribution suggests that there is no phase transition at finite tern- 
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perature, though they found abundant evidence of freezing. It is known, 
however, that there is a phase transition at T #  0 for a suitable distribution 
of distances. (2) This means that the probability distribution is relevant to 
the behavior of the model. 

The other version is the Euclidean one, in which the cities form a 
collection of points on a plane. The distance d(i, j) between the pair (i, j) 
is the usual Euclidean one. The statistical mechanics of this version has 
been less studied, (5'6) leaving open the question of whether there might be 
a phase transition at some finite temperature. In this paper we analyze 
numerically the low-temperature behavior of the Euclidean TSP and 
compare these results with those of spin glasses. 

The cost function is the length of the tour 

N 

l= ~" d(p(i), p(i+ 1)) 
i = l  

where p(i) is some permutation of the N cities and {d(i, j)} is the distance 
matrix of the Cities. The Monte Carlo algorithm can be easily generalized 
to optimization problems, simply by replacing the energy in the transition 
probability by the cost function. An important point of the method is the 
choice of its local rearrangements or local moves. We considered the 
strategy of 2-opt replacement, which consists in exchanging the position in 
the order of the tour of two randomly chosen cities. One MC step is 
defined as N attempted random rearrangements. 

The energy was computed for N =  49, 81, 100, 144, 196, and 400. For 
each value:of N we considered three different instances of the problem. 
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Fig. 1. Energy as a function of T for N =  (x) 196, ( �9  
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Specific heat C as a function of T for N = 100, 196, 400. 

Starting from a random configuration, the first run was taken at T =  20.0 
in scaled units (T = t x/-N). Also, the length was scaled as L = 1/x/N. The 
system was then cooled in steps AT which take the values 0.1 away from 
T =  0 and 0.01 near T =  0. This means that the cooling rate Q used, defined 
as the time in MC steps (m) spent at each temperature, Q = AT/m, depends 
on the temperature range. For T >  2.0 the cooling rate was chosen to be 
10-4; for a lower temperature it was 10 5; and in the range 0.01 < T <  0.1 
we considered Q =  10 -6. We measured the energy explicitly with three 
different temporal MC intervals to check that the energy measurements 
were not correlated. The number of MC steps needed to reach equilibrium 
was determined empirically so that the energy has clearly stopped drifting. 
The results of the energy for different sample sizes are shown in Fig. 1. 
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Fig. 3. The maximum of C as a function of log N. 
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Fig. 4. The order parameter q as a function of T for two values of N = ( O ) 1 0 0  and 
(O)  196. The cooling rate for T>0.1 was Q = 1 0  -5, and for T<0.1 was Q = 1 0  -6. In the 

upper corner the zone of interest is shown in detail. 

There are two ways of computing the specific heat C from an MC 
simulation. The first is to calculate it from the fluctuations of the length, or 
energy, L, so C_ ( L  2) - ( L )  2. This method was tried, but the results were 
strongly dependent on the way the computation was done. This is because 
this method involves subtracting two large, fluctuating quantities. The 
second way to compute C is by differentiation of the energy with respect 
to the temperature. We fired the low-energy curve with a least squares 
method and evaluated the derivative. The results for the specific heat C are 
shown in Fig. 2. We found a rounded peak similar to the two-dimensional 
E-A spin-glass model. (7'8) By studying also the dependence of the maximum 
of C on N (see Fig. 3), we found its behavior to be qualitatively similar to 
that of the E-A spin glass in 2D (see Fig. 18 in ref. 8). 

Following Morgenstern and Wurtz, ~9) we define an order parameter q 
as the number of bonds that do not change between the initial configura- 
tion (after equilibrium was reached) and the final one at a given tem- 
perature. Although the behavior of the peak of C with N might suggest a 
phase transition at a finite temperature, we note, observing the order 
parameter q, that it is a freezing effect, similar to that in the spin-glass case. 
In fact, changing the observation time, with the same T, near T =  0, we 
observe a drastic change in the behavior of q (see Fig. 4). It can be expec- 
ted that if the cooling procedure were arbitrarily slow, then the order 
parameter q would be equal to zero for all finite temperatures .  

It must be emphasized that the observed fluctuations from sample to 
sample were negligible for all the studied quantities and sizes. 

In conclusion, our numerical data suggest that the Euclidean TSP 
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behaves qualitatively like a spin glass in 2D. If this is so, the results on the 
phase transition in the last model would be also valid for the Euclidean 
TSP. One should remark that the E-A spin glass in 2D is a P-problem, (1~ 
while the TSP is an NP-problem, which in fact seems to have no relevance 
to the thermodynamic properties of the models. 
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